CHAPTER 8

Generating Random Variates

8.1 Introduction 2
8.2 General Approaches to Generating Random Variates 3
8.2.1 Inverse Transform 3
8.2.2 Composition 11
8.2.3 Convolution 16
8.2.4 Acceptance-Rejection 18
8.2.5 Special Properties 26
8.3 Generating Continuous Random Variates 27
8.4 Generating Discrete Random Variates 27
8.4.3 Arbitrary Discrete Distribution 28
8.5 Generating Random Vectors, Correlated Random Variates, and Stochastic Processes 34
8.5.1 Using Conditional Distributions 35
8.5.2 Multivariate Normal and Multivariate Lognormal. 36
8.5.3 Correlated Gamma Random Variates 37
8.5.4 Generating from Multivariate Families 39
8.5.5 Generating Random Vectors with Arbitrarily Specified Marginal Distributions and Correlations 40
8.5.6 Generating Stochastic Processes 41
8.6 Generating Arrival Processes 42
8.6.1 Poisson Process 42
8.6.2 Nonstationary Poisson Process 43
8.6.3 Batch Arrivals 50

8.1 Introduction

Algorithms to produce observations ("variates") from some desired input distribution (exponential, gamma, etc.)

Formal algorithm—depends on desired distribution

But all algorithms have the same general form:

| Generate one or more
 IID U(0, 1) random
 numbers |
| :---: |\rightarrow| Transformation |
| :---: |
| depends on desired |
| distribution) |$. \rightarrow$| Return $X \sim$ desired |
| :---: |
| distribution |

Note critical importance of a good random-number generator (Chap. 7)
May be several algorithms for a desired input distribution form; want:

Exact: X has exactly (not approximately) the desired distribution
Example of approximate algorithm:
Treat $Z=U_{1}+U_{2}+\cdots+U_{12}-6$ as $\mathrm{N}(0,1)$
Mean, variance correct; rely on CLT for approximate normality
Range clearly incorrect

Efficient: Low storage
Fast (marginal, setup)
Efficient regardless of parameter values (robust)

Simple: Understand, implement (often tradeoff against efficiency)

Requires only $\mathrm{U}(0,1)$ input

One $U \rightarrow$ one X
(if possible-for speed, synchronization in variance reduction)

8.2 General Approaches to Generating Random Variates

Five general approaches to generating a univariate RV from a distribution:
Inverse transform
Composition
Convolution
Acceptance-rejection
Special properties

8.2.1 Inverse Transform

Simplest (in principle), "best" method in some ways; known to Gauss

Continuous Case

Suppose X is continuous with cumulative distribution function (CDF) $F(x)=P(X \leq x)$ for all real numbers x that is strictly increasing over all x

Algorithm:

1. Generate $U \sim \mathrm{U}(0,1)$ (random-number generator)
2. Find X such that $F(X)=U$ and return this value X

Step 2 involves solving the equation $F(X)=U$ for X; the solution is written $X=F^{-1}(U)$, i.e., we must invert the CDF F

Inverting F might be easy (exponential), or difficult (normal) in which case numerical methods might be necessary (and worthwhile-can be made "exact" up to machine accuracy)

Proof: (Assume F is strictly increasing for all x.) For a fixed value x_{0},

$$
\begin{aligned}
P\left(\text { returned } X \text { is } \leq x_{0}\right) & =P\left(F^{-1}(U) \leq x_{0}\right) & & \text { (def. of } X \text { in algorithm) } \\
& =P\left(F\left(F F^{-1}(U)\right) \leq F\left(x_{0}\right)\right) & & (F \text { is monotone } \uparrow) \\
& =P\left(U \leq F\left(x_{0}\right)\right) & & \text { (def. of inverse function } \\
& =P\left(0 \leq U \leq F\left(x_{0}\right)\right) & & (U \geq 0 \text { for sure) } \\
& =F\left(x_{0}\right)-0 & & (U \sim \mathrm{U}(0,1)) \\
& =F\left(x_{0}\right) & & \text { (as desired) }
\end{aligned}
$$

Proof by Picture:

Pick a fixed value x_{0}
$X_{1} \leq x_{0}$ if and only if $U_{1} \leq F\left(x_{0}\right)$, so

$$
\begin{aligned}
P\left(X_{1} \leq x_{0}\right) & =P\left(U_{1} \leq F\left(x_{0}\right)\right) \\
& =F\left(x_{0}\right), \quad \text { by definition of } \mathrm{CDFs}
\end{aligned}
$$

Example of Continuous Inverse-Transform Algorithm Derivation

Weibull (α, β) distribution, parameters $\alpha>0$ and $\beta>0$
Density function is $f(x)= \begin{cases}\alpha \beta^{-\alpha} x^{\alpha-1} e^{-(x / \beta)^{\alpha}} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}$
CDF is $F(x)=\int_{-\infty}^{x} f(t) d t= \begin{cases}1-e^{-(x / \beta)^{\alpha}} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}$
Solve $U=F(X)$ for X :

$$
\begin{aligned}
U & =1-e^{-(X / \beta)^{\alpha}} \\
e^{-(X / \beta)^{\alpha}} & =1-U \\
-(X / \beta)^{\alpha} & =\ln (1-U) \\
X / \beta & =[-\ln (1-U)]^{1 / \alpha} \\
X & =\beta[-\ln (1-U)]^{1 / \alpha}
\end{aligned}
$$

Since $1-U \sim \mathrm{U}(0,1)$ as well, can replace $1-U$ by U to get the final algorithm:

1. Generate $U \sim \mathrm{U}(0,1)$
2. Return $X=\beta(-\ln U)^{1 / \alpha}$

Intuition Behind Inverse-Transform Method

(Weibull ($\alpha=1.5, \beta=6$) example)

(b)

The algorithm in action:

Discrete Case

Suppose X is discrete with cumulative distribution function (CDF)

$$
F(x)=P(X \leq x) \text { for all real numbers } x
$$

and probability mass function

$$
p\left(x_{i}\right)=P\left(X=x_{i}\right),
$$

where x_{1}, x_{2}, \ldots are the possible values X can take on

Algorithm:

1. Generate $U \sim \mathrm{U}(0,1)$ (random-number generator)
2. Find the smallest positive integer I such that $U \leq F\left(x_{I}\right)$
3. Return $X=x_{I}$

Step 2 involves a "search" of some kind; several computational options:
Direct left-to-right search—if $p\left(x_{i}\right)$'s fairly constant
If $p\left(x_{i}\right)$'s vary a lot, first sort into decreasing order, look at biggest one first, ..., smallest one last-more likely to terminate quickly
Exploit special properties of the form of the $p\left(x_{i}\right)$'s, if possible

Unlike the continuous case, the discrete inverse-transform method can always be used for any discrete distribution (but it may not be the most efficient approach)

Proof: From the above picture, $P\left(X=x_{i}\right)=p\left(x_{i}\right)$ in every case

Example of Discrete Inverse-Transform Method

Discrete uniform distribution on $1,2, \ldots, 100$
$x_{i}=i$, and $p\left(x_{i}\right)=p(i)=P(X=i)=0.01$ for $i=1,2, \ldots, 100$

"Literal" inverse transform search:

1. Generate $U \sim \mathrm{U}(0,1)$
2. If $U \leq 0.01$ return $X=1$ and stop; else go on
3. If $U \leq 0.02$ return $X=2$ and stop; else go on
4. If $U \leq 0.03$ return $X=3$ and stop; else go on
5. If $U \leq 0.99$ return $X=99$ and stop; else go on
6. Return $X=100$

Equivalently (on a U-for- U basis):

1. Generate $U \sim \mathrm{U}(0,1)$
2. Return $X=\lfloor 100 U\rfloor+1$

Generalized Inverse-Transform Method

Valid for any CDF $F(x)$: return $X=\min \{x: F(x) \geq U\}$, where $U \sim \mathrm{U}(0,1)$
Continuous, possibly with flat spots (i.e., not strictly increasing)
Discrete
Mixed continuous-discrete

Problems with Inverse-Transform Approach

Must invert CDF, which may be difficult (numerical methods)
May not be the fastest or simplest approach for a given distribution

Advantages of Inverse-Transform Approach

Facilitates variance-reduction techniques; an example:
Study effect of speeding up a bottleneck machine
Compare current machine with faster one
To model speedup: Change service-time distribution for this machine
Run 1 (baseline, current system): Use inverse transform to generate service-time variates for existing machine
Run 2 (with faster machine): Use inverse transform to generate service-time variates for proposed machine
Use the very same uniform $\mathrm{U}(0,1)$ random numbers for both variates:
Service times will be positively correlated with each other Inverse-transform makes this correlation as strong as possible, in comparison with other variate-generation methods Reduces variability in estimate of effect of faster machine Main reason why inverse transform is often regarded as "the best" method

Common random numbers

Can have big effect on estimate quality (or computational effort required) Generating from truncated distributions (pp. 447-448 and Problem 8.4 of SMA) Generating order statistics without sorting, for reliability models:
$\mathrm{Y}_{1}, Y_{2}, \ldots, Y_{n}$ IID $\sim F$; want $Y_{(i)}$ - directly, generate Y_{i} 's, and sort Alternatively, return $Y_{(i)}=F^{-1}(V)$ where $V \sim \operatorname{beta}(i, n-i+1)$

8.2.2 Composition

Want to generate from CDF F, but inverse transform is difficult or slow
Suppose we can find other $\operatorname{CDFs} F_{1}, F_{2}, \ldots$ (finite or infinite list) and weights p_{1}, $p_{2}, \ldots\left(p_{j} \geq 0\right.$ and $\left.p_{1}+p_{2}+\cdots=1\right)$ such that for all x,

$$
F(x)=p_{1} F_{1}(x)+p_{2} F_{2}(x)+\cdots
$$

(Equivalently, can decompose density $f(x)$ or mass function $p(x)$ into convex combination of other density or mass functions)

Algorithm:

1. Generate a positive random integer J such that $P(J=j)=p_{j}$
2. Return X with $\operatorname{CDF} F_{J}$ (given $J=j, X$ is generated independent of J)

Proof: For fixed x,

$$
\begin{aligned}
\mathrm{P}(\text { returned } X \leq x) & =\sum_{j} P(X \leq x \mid J=j) P(J=j) & & \text { (condition on } J=j) \\
& =\sum_{j} P(X \leq x \mid J=j) p_{j} & & \text { (distribution of } J \text {) } \\
& =\sum_{j} F_{j}(x) p_{j} & & \left(\text { given } J=j, X \sim F_{j}\right) \\
& =F(x) & & \text { (decomposition of } F)
\end{aligned}
$$

The trick is to find F_{j} 's from which generation is easy and fast
Sometimes can use geometry of distribution to suggest a decomposition

Example 1 of Composition Method (divide area under density vertically)

Symmetric triangular distribution on $[-1,+1]$:
Density: $f(x)=\left\{\begin{array}{cc}x+1 & \text { if }-1 \leq x \leq 0 \\ -x+1 & \text { if } 0 \leq x \leq+1 \\ 0 & \text { otherwise }\end{array}\right.$

CDF:
$F(x)=\left\{\begin{array}{cl}0 & \text { if } x<-1 \\ x^{2} / 2+x+1 / 2 & \text { if }-1 \leq x \leq 0 \\ -x^{2} / 2+x+1 / 2 & \text { if } 0<x \leq+1 \\ 1 & \text { if } x>+1\end{array}\right.$

Inverse-transform:

$$
\begin{aligned}
& U=F(X)=\left\{\begin{array}{ll}
X^{2} / 2+X+1 / 2 & \text { if } U<1 / 2 \\
-X^{2} / 2+X+1 / 2 & \text { if } U \geq 1 / 2
\end{array}\right\} ; \text { solve for } \\
& X=\left\{\begin{array}{ll}
\sqrt{2 U}-1 & \text { if } U<1 / 2 \\
1-\sqrt{2(1-U)} & \text { if } U \geq 1 / 2
\end{array}\right\}
\end{aligned}
$$

Composition: Define indicator function for the set A as $I_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}$

$$
\begin{aligned}
f(x) & =(x+1) I_{[-1,0]}(x) \\
& =\underbrace{0.5\{\underbrace{2(x+1) I_{[-1,0]}(x)}_{f_{1}(x)}\}}_{p_{1}}+\underbrace{+\underbrace{(-x+1) I_{[0,+1]}(x)}_{f_{2}(x)}}_{p_{2}} \begin{array}{r}
0.5\left\{(-x+1) I_{[0,+1]}(x)\right\}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& F_{1}(x)=x^{2}+2 x+1 \\
& F_{1}^{-1}(U)=\sqrt{U}-1
\end{aligned}
$$

$$
F_{2}(x)=-x^{2}+2 x
$$

$$
F_{2}^{-1}(U)=1-\sqrt{1-U}
$$

Composition algorithm:

1. Generate $U_{1}, U_{2} \sim \mathrm{U}(0,1)$ independently
2. If $U_{1}<1 / 2$, return $X=\sqrt{U_{2}}-1$
(Can eliminate
$\sqrt{ }$, s)

Otherwise, return $X=1-\sqrt{1-U_{2}}$
Comparison of algorithms (expectations):

Method	U 's	Compares	Adds	Multiplies	$\sqrt{ }$'s
Inv. trnsfrm.	1	1	1.5	1	1
Composition	2	1	1.5	0	1

So composition needs one more U, one fewer multiply-faster if RNG is fast

Example 2 of Composition Method (divide area under density horizontally)

Trapezoidal distribution on [0, 1] with parameter $a(0<a<1)$:

Density: $f(x)=\left\{\begin{array}{l}2-a-2(1-a) x \text { if } 0 \leq x \leq 1 \\ 0 \text { otherwise }\end{array}\right.$

CDF: $F(x)=\left\{\begin{array}{l}0 \text { if } x<0 \\ (2-a) x-(1-a) x^{2} \text { if } 0 \leq x \leq 1 \\ 1 \text { if } x>1\end{array}\right.$

Inverse-transform:

$$
U=F(X)=(2-a) X-(1-a) X^{2} ; \text { solve for } X=\frac{2-a}{2(1-a)}-\sqrt{\frac{(a-2)^{2}}{4(1-a)^{2}}-\frac{U}{1-a}}
$$

Composition:

$$
f(x)=\underbrace{a}_{p_{1}} \underbrace{\left\{I_{[0,1]}(x)\right\}}_{f_{1}(x)}+\underbrace{(1-a)}_{p_{2}} \underbrace{\left\{2(1-x) I_{[0,1]}(x)\right\}}_{f_{2}(x)}
$$

Just $\mathrm{U}(0,1)$

$$
\begin{aligned}
& F_{1}(x)=x \\
& F_{1}^{-1}(U)=U
\end{aligned}
$$

$$
\begin{aligned}
& F_{2}(x)=-x^{2}+2 x \\
& F_{2}^{-1}(U)=1-\sqrt{1-U}
\end{aligned}
$$

Composition algorithm:

1. Generate $U_{1}, U_{2} \sim \mathrm{U}(0,1)$ independently
2. If $U_{1}<a$, return $X=U_{2}$

Otherwise, return $X=1-\sqrt{1-U_{2}} \quad$ (Can eliminate $\sqrt{ }$)

Comparison of algorithms (expectations):

Method	U 's	Compares	Adds	Multiplies	$\sqrt{ }$'s
Inv. trnsfrm.	1	0	2	1	1
Composition	2	1	$2(1-a)$	0	$1-a$

Composition better for large a, where F is nearly $\mathrm{U}(0,1)$ and it avoids the $\sqrt{ }$

8.2.3 Convolution

Suppose desired RV X has same distribution as $Y_{1}+Y_{2}+\cdots+Y_{m}$, where the Y_{j} 's are IID and m is fixed and finite
Write: $X \sim Y_{1}+Y_{2}+\cdots+Y_{m}$, called m-fold convolution of the distribution of Y_{j}
Contrast with composition:
Composition: Expressed the distribution function (or density or mass) as a (weighted) sum of other distribution functions (or densities or masses)
Convolution: Express the random variable itself as the sum of other random variables
Algorithm (obvious):

1. Generate $Y_{1}, Y_{2}, \cdots, Y_{m}$ independently from their distribution
2. Return $X=Y_{1}+Y_{2}+\cdots+Y_{m}$

Example 1 of Convolution Method

$X \sim m$-Erlang with mean $\beta>0$
Express $X=Y_{1}+Y_{2}+\cdots+Y_{m}$ where Y_{j} 's \sim IID exponential with mean β / m
Note that the speed of this algorithm is not robust to the parameter m

Example 2 of Convolution Method

Symmetric triangular distribution on $[-1,+1]$ (again):

$$
\text { Density: } f(x)=\left\{\begin{array}{cc}
x+1 & \text { if }-1 \leq x \leq 0 \\
-x+1 & \text { if } 0 \leq x \leq+1 \\
0 & \text { otherwise }
\end{array}\right.
$$

By simple conditional probability: If $U_{1}, U_{2} \sim \operatorname{IID~} \mathrm{U}(0,1)$, then $U_{1}+U_{2} \sim$ symmetric triangular on [0, 2], so just shift left by 1 :

$$
\begin{aligned}
X & =\quad U_{1}+U_{2}-1 \\
& =\underbrace{\left(U_{1}-0.5\right)}_{Y_{1}}+\underbrace{\left(U_{2}-0.5\right)}_{Y_{2}}
\end{aligned}
$$

$2 U \mathrm{~s}, 2$ adds; no compares, multiplies, or $\sqrt{ } \mathrm{s}$-clearly beats inverse transform, composition

8.2.4 Acceptance-Rejection

Usually used when inverse transform is not directly applicable or is inefficient (e.g., gamma, beta)
Has continuous and discrete versions (we'll just do continuous; discrete is similar) Goal: Generate X with density function f

Specify a function $t(x)$ that majorizes $f(x)$, i.e., $t(x) \geq f(x)$ for all x

Then $t(x) \geq 0$ for all x, but $\int_{-\infty}^{\infty} t(x) d x \geq \int_{-\infty}^{\infty} f(x) d x=1$ so $t(x)$ is not a density
Set $c=\int_{-\infty}^{\infty} t(x) d x \geq 1$
Define $r(x)=t(x) / c$ for all x
Thus, $r(x)$ is a density (integrates to 1)

Algorithm:

1. Generate Y having density r
2. Generate $U \sim \mathrm{U}(0,1)$ (independent of Y in Step 1)
3. If $U \leq f(Y) / t(Y)$, return $X=Y$ and stop; else go back to Step 1 and try again
(Repeat $1-2-3$ until acceptance finally occurs in Step 3)

Since t majorizes $f, f(Y) / t(Y) \leq 1$ so " $U \leq f(Y) / t(Y)$ " may or may not occur for a given U
Must be able to generate Y with density r, hopefully easily-choice of t
On each pass, $P($ acceptance $)=1 / c$, so want small $c=$ area under $t(x)$, so want t to "fit" down on top of f closely (i.e., want t and thus r to resemble f closely)
Tradeoff between ease of generation from r, and closeness of fit to f

Proof: Key-we get an X only conditional on acceptance in step 3. So

$$
\begin{aligned}
P(\text { generated } X \leq x) & =P(Y \leq x \mid \text { acceptance }) \\
& =\frac{P(\text { acceptance, } Y \leq x)}{P(\text { acceptance })} \text { (def. of cond'l. prob.) }
\end{aligned}
$$

(Evaluate top and bottom of *.)

For any y,

$$
P(\text { acceptance } \mid Y=y)=P(U \leq f(y) / t(y))=f(y) / t(y)
$$

since $U \sim \mathrm{U}(0,1), Y$ is independent of U, and $t(y)>f(y)$. Thus,

$$
\begin{aligned}
P\left(\text { acceptance } \begin{array}{rl}
Y \leq x) & = \\
& =\underbrace{\int_{-\infty}^{x} P(\text { acceptance, } Y \leq x \mid Y=y) r(y) d y}_{Y \leq x \text { on thistange, guaranteeng } Y \leq x \text { in theprobability }} \\
& \underbrace{\int_{x}^{\infty} P(\text { acceptance, } Y \leq x \mid Y=y) r(y) d y}_{Y \geq x \text { on thisrange, contradicitng } Y \leq x \text { in theprobability }} \\
& =\int_{-\infty}^{x} P(\text { acceptance, } Y \leq x \mid Y=y) r(y) d y \\
& =\frac{1}{c} \int_{-\infty}^{x} \frac{f(y)}{t(y)} t(y) d y \quad(\text { def. of } r(y)) \\
& =F(x) / c
\end{array},\right. \\
\end{aligned}
$$

Next,

$$
\begin{aligned}
P(\text { acceptance }) & =\int_{-\infty}^{\infty} P(\text { acceptance } \mid Y=y) r(y) d y \\
& =\frac{1}{c} \int_{-\infty}^{\infty} \frac{f(y)}{t(y)} t(y) d y \\
& =\frac{1}{c} \int_{-\infty}^{\infty} f(y) d y \\
& =1 / c
\end{aligned}
$$

since f is a density and so integrates to 1 . Putting ${ }^{* *}$ and ${ }^{* * *}$ back into ${ }^{*}$,

$$
\begin{aligned}
P(\text { generated } X \leq x) & =\frac{P(\text { acceptance } Y \leq x)}{P(\text { acceptance })} \\
& =\frac{F(x) / c}{1 / c} \\
& =F(x),
\end{aligned}
$$

as desired.
(Depressing footnote: John von Neumann, in his 1951 paper developing this idea, needed only a couple of sentences of words - no math or even notation - to see that this method is valid.)

Example of Acceptance-Rejection

Beta(4,3) distribution, density is $f(x)=60 x^{3}(1-x)^{2}$ for $0 \leq x \leq 1$

Top of density is $f(0.6)=2.0736$ (exactly), so let $t(x)=2.0736$ for $0 \leq x \leq 1$

Thus, $c=2.0736$, and r is the $\mathrm{U}(0,1)$ density function

Algorithm:

1. Generate $Y \sim \mathrm{U}(0,1)$
2. Generate $U \sim \mathrm{U}(0,1)$ independent of Y
3. If $U \leq 60 Y^{3}(1-Y)^{2} / 2.0736$, return $X=Y$ and stop; else go back to step 1 and try again
$P($ acceptance $)$ in step 3 is $1 / 2.0736=0.48$

A different way to look at it-accept Y if $U t(Y) \leq f(Y)$, so plot the pairs $(Y, U t(Y))$ and accept the Y 's for which the pair is under the f curve

A closer-fitting majorizing function:

Higher acceptance probability on a given pass

Harder to generate Y with density shaped like t (composition)

Better ???

Squeeze Methods

Possible slow spot in A-R is evaluating $f(Y)$ in step 3, if f is complicated

Add a fast pre-test for acceptance just before step 3-if pre-test is passed we know that the test in step 3 would be passed, so can quit without actually doing the test (and evaluating $f(Y)$).

One way to do this - put a minorizing function $b(x)$ under $f(x)$:

Since $b(x) \leq f(x)$, pre-test is first to check if $U \leq b(Y) / t(Y)$; if so accept Y right away (if not, have to go on and do the actual test in step 3)

Good choice for $b(x)$:
Close to $f(x)$ (so pre-test and step 3 test agree most of the time)
Fast and easy to evaluate $b(x)$

8.2.5 Special Properties

Simply "tricks" that rely completely on a given distribution's form

Often, combine several "component" variates algebraically (like convolution)

Must be able to figure out distributions of functions of random variables

No coherent general form - only examples

Example 1: Geometric

Physical "model" for $X \sim$ geometric with parameter $p(0<p<1)$:
$X=$ number of "failures" before first success in Bernoulli trials with P (success) $=p$

Algorithm: Generate Bernoulli (p) variates and count the number of failures before first success

Clearly inefficient if p is close to 0

Example 2: Beta

If $Y_{1} \sim \operatorname{gamma}\left(\alpha_{1}, 1\right), Y_{2} \sim \operatorname{gamma}\left(\alpha_{2}, 1\right)$, and they are independent, then

$$
X=Y_{1} /\left(Y_{1}+Y_{2}\right) \sim \operatorname{beta}\left(\alpha_{1}, \alpha_{2}\right)
$$

Thus, we effectively have a beta generator if we have a gamma generator

8.3 Generating Continuous Random Variates

Sixteen families of continuous distributions found useful for modeling simulation input processes

Correspond to distributions defined in Chap. 6

At least one variate-generation algorithm for each is specifically given on $\mathrm{pp} .459-$ 471 of SMA

Algorithms selected considering exactness, speed, and simplicity - often there are tradeoffs involved among these criteria

8.4 Generating Discrete Random Variates

Seven families of discrete distributions found useful for modeling simulation input processes

Correspond to distributions defined in Chap. 6

At least one variate-generation algorithm for each is specifically given on $\mathrm{pp} .471-$ 478 of SMA

Algorithms selected considering exactness, speed, and simplicity - often there are tradeoffs involved among these criteria

One of these seven is completely general if the range of the random variable is finite, and will be discussed separately in Sec. 8.4.3 ...

8.4.3 Arbitrary Discrete Distribution

Common situation: Generate discrete $X \in\{0,1,2, \ldots, n\}$ with mass function $p(i)=$ $P(X=i), i=0,1,2, \ldots, n$

In its own right to represent, say, lot sizes in a manufacturing simulation
As part of other variate-generation methods (e.g., composition)
Why restrict to range $\{0,1,2, \ldots, n\}$ rather than general $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$?

Not as restrictive as it seems:

Really want a general range $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$

Let $n=m-1$ and let $p(j-1)=P\left(X=x_{j}\right), j=1,2, \ldots, m(=n+1)$

$$
\text { (so } j-1=0,1, \ldots, m-1(=n))
$$

Algorithm:

1. Generate J on $\{0,1,2, \ldots, n\}$ with mass function $p(j)$
2. Return $X=x_{J+1}$

Have already seen one method to do this: Inverse transform
Always works

But may be slow, especially for large range (n)

Table Lookup

Assume that each $p(i)$ can be represented as (say) a 2-place decimal

Example:

i	0	1	2	3	
$p(i)$	0.15	0.20	0.37	0.28	$1.00=$ sum of $p(i)$'s (must be exact - no roundoff allowed)

Initialize a vector $\left(m_{1}, m_{2}, \ldots, m_{100}\right)$ with

$$
\begin{array}{ll}
m_{1}=m_{2}=\cdots=m_{15}=0 & \text { (first } 100 p(0) m_{j} \prime \text { 's set to 0) } \\
m_{16}=m_{17}=\cdots=m_{35}=1 & \text { (next } 100 p(1) m_{j} \prime \text { s set to 1) } \\
m_{36}=m_{37}=\cdots=m_{72}=2 & \text { (next 100p(2) } m_{j} \text { 's set to 2) } \\
m_{73}=m_{74}=\cdots=m_{100}=3 & \text { (last 100p(3) } m_{j} \text { 's set to 3) }
\end{array}
$$

Algorithm (obvious):

1. Generate J uniformly on $\{1,2, \ldots, 100\}$

$$
(J=\lfloor 100 U\rfloor+1)
$$

2. Return $X=m_{J}$

Advantages:
Extremely simple
Extremely fast (marginal)

Drawbacks:
Limited accuracy on $p(i)$'s-use 3 or 4 decimals instead?
(Few decimals OK if $p(i)$'s are themselves inaccurate estimates)
Storage is $10 d$, where $d=$ number of decimals used
Setup required (but not much)

Marsaglia Tables

As above, assume $p(i)$'s are q-place decimals ($q=2$ above); set up tables

But will use less storage, a little more time

Same example:

i	0	1	2	3	
$p(i)$	0.15	0.20	0.37	0.28	$1.00=$ sum of $p(i)$'s (must be exact-no roundoff allowed)

Initialize a vector for each decimal place (here, need $q=2$ vectors):
"Tenths" vector: Look at tenths place in each $p(i)$; put in that many copies of the associated i

$$
\frac{0}{1} \frac{11}{2} \frac{222}{3} \frac{33}{2} \leftarrow 10 \text { ths vector }
$$

"Hundredths" vector: Look at hundredths place in each $p(i)$; put in that many copies of the associated i

Total storage $=8+20=28=$ sum of all the digits in the $p(i)$'s

Was 100 for table-lookup method

Algorithm:

1. Pick 10ths vector with prob. $1 / 10 \times($ sum of 10 ths digits $)=8 / 10$.

If picked, return $X=$ one of the entries in this vector with equal probability (1/8 here).
If not picked, go on to step 2.
2. Pick 100ths vector with prob. $1 / 100 \times($ sum of 100 ths digits $)=20 / 100$. If picked, return $X=$ one of the entries in this vector with equal probability (1/20 here).
If not picked, go on to step 3. (Won't happen here.)
3. (Not present here.) Pick 1000ths vector with prob. $1 / 1000 \times$ (sum of 1000ths digits)
If picked, return $X=$ one of the entries in this vector with equal probability. If not picked, go on to step 4.
etc.

Proof (by example for $i=2$; other cases exactly analogous):

$$
\begin{aligned}
P(\text { generated } X=2)= & P(X=2 \mid \text { pick 10ths vector }) P(\text { pick 10ths vector })+ \\
& P(X=2 \mid \text { pick 100ths vector }) P(\text { pick 100ths vector }) \\
= & \frac{3}{8} \times \frac{8}{10}+\frac{7}{20} \times \frac{20}{100} \\
= & 0.37, \quad \text { as desired } .
\end{aligned}
$$

Main advantage: Less storage than table-lookup, especially for large number of decimals required in the $p(i)$'s

The Alias Method

Improvement over A-R: If we "reject," we don't give up and start all over, but instead return the alias of the generated Y

Set up two vectors of length $n+1$ each:
Aliases $L_{0}, L_{1}, \ldots, L_{n} \in\{0,1, \ldots, n\}$
Cutoffs $F_{0}, F_{1}, \ldots, F_{n} \in[0,1]$
(Setup methods for aliases and cutoffs on
pp. 490-491 of SMA.)

Algorithm:

1. Generate I uniformly on $\{0,1, \ldots, n\} \quad(I=\lfloor(n+1) U\rfloor)$
2. Generate $U_{0} \sim \mathrm{U}(0,1)$ independent of I
3. If $U_{0} \leq F_{I}$, return $X=I$; otherwise, return $X=L_{I}$

Note that a "rejection" in step 3 results in returning the alias of I, rather than throwing I out and starting all over, as in A-R

Proof: Complicated; embodied in algorithms to set up aliases and cutoffs

Intuition:
Approximate $p(i)$'s initially by simple discrete uniform I on $\{0,1, \ldots, n\}$
Thus, $I=i$ with probability $1 /(n+1)$ for each $i \in\{0,1, \ldots, n\}$
For i with $p(i) \ll 1 /(n+1)$, cutoff F_{i} is small, so will probably "move away" to another value L_{i} for which $p\left(L_{i}\right) \gg 1 /(n+1)$
For i with $p(i) \gg 1 /(n+1)$, cutoff F_{i} is large (like 1) or alias of i is itself ($L_{i}=$ i), so will probably "keep" all the $I=i$ values, as well as receive more from other values with low desired probabilities
Clever part: can get an algorithm for cutoffs and aliases so that this shifting works out to exactly the desired $p(i)$'s in the end

Advantage: Very fast

Drawbacks:
Requires storage of $2(n+1)$; can be reduced to $n+1$, still problematic Requires the initial setup of aliases and cutoffs

Example of Alias method:

i	0	1	2	3
$p(i)$	0.1	0.4	0.2	0.3
F_{i}	0.4	0.0	0.8	0.0
L_{i}	1	1	3	3

Picture:

How can the algorithm return $X=2$?
Since 2 is not the alias of anything else, can get $X=2$ only if we generate $I=2$ and keep it (i.e., don't change $I=2$ to its alias $F_{2}=3$)
Thus,

$$
\begin{aligned}
P(X=2) & =P(I=2 \text { and } U \leq 0.8) \\
& =P(I=2) P(U \leq 0.8) \text { since } I \text { and } U \text { are generated independently } \\
& =0.25 \times 0.8=0.2, \text { as desired }
\end{aligned}
$$

How can the algorithm return $X=3$?
Can get $X=3$ in two mutually exclusive ways:
Generate $I=3$ (since alias of 3 is $L_{3}=3$, will always get a 3 here)
Generate $I=2$ but change it to its alias 3
Thus,

$$
\begin{aligned}
P(X=3) & =P(I=3)+P(I=2 \text { and } U>0.8) \\
& =0.25+0.25 \times 0.2=0.3, \text { as desired }
\end{aligned}
$$

8.5 Generating Random Vectors, Correlated Random Variates, and Stochastic Processes

So far: IID univariate RVs

Sometimes have correlation between RVs in reality:
$A=$ interarrival time of a job from an upstream process
$S=$ service time of job at the station being modeled

Perhaps a large A means that the job is "large," taking a lot of time upstreamthen it probably will take a lot of time here too (S large)
i.e., $\operatorname{Cor}(A, S)>0$

Ignoring this correlation can lead to serious errors in output validity (see notes for Chap. 6 for some specific numerical examples)
Need ways to generate it in the simulation

May want to simulate entire joint distribution of a random vector for input:
Multivariate normal in econometric or statistical simulation

Important distinction:

Full joint distribution of random vector \mathbf{X} $=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T} \in \mathfrak{R}^{n}$

Marginal distributions of each X_{i} and all
covariances or correlations

These are the same thing only in the case of multivariate normal

Could want either in simulation

8.5.1 Using Conditional Distributions

Suppose we know the entire joint distribution for a random vector X , i.e., for a fixed $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathfrak{R}^{n}$, we know the value of the joint CDF

$$
F(\mathbf{x})=P(\mathbf{X} \leq \mathbf{x})=P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)
$$

This determines all the covariances and correlations

General method:
For $i=1,2, \ldots, n$, let $F_{i}(\cdot)$ be the marginal distribution of X_{i}
For $k=2,3, \ldots, n$, let $F_{k}\left(\bullet \mid X_{1}, X_{2}, \ldots, X_{k-1}\right)$ be the conditional distribution of X_{k} given $X_{1}, X_{2}, \ldots, X_{k-1}$

Algorithm:

1. Generate X_{1} (marginally) from F_{1}
2. Generate X_{2} from $F_{2}\left(\bullet \mid X_{1}\right)$
3. Generate X_{3} from $F_{3}\left(\bullet \mid X_{1}, X_{2}\right)$

-
-
-

n. Generate X_{n} from $F_{n}\left(\cdot \mid X_{1}, X_{2}, \ldots, X_{n-1}\right)$
$\boldsymbol{n}+1$. Return $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$

Proof: Tedious but straightforward manipulation of definitions of marginal and conditional distributions

Completely general concept
Requires a lot of input information

8.5.2 Multivariate Normal and Multivariate Lognormal

One case where knowing the marginal distributions and all the covariances/correlations is equivalent to knowing the entire joint distribution

Want to generate multivariate normal random vector \mathbf{X} with:
Mean vector $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{T}$
Covariance matrix $\Sigma=\left[\sigma_{i j}\right]_{n \times n}$

Since Σ must be positive definite, there is a unique lower-triangular $n \times n$ matrix \mathbf{C} such that $\Sigma=\mathbf{C C}{ }^{T}$ (there are linear-algebra algorithms to do this)

Algorithm:

1. Generate $Z_{1}, Z_{2}, \ldots, Z_{n}$ as IID $\mathrm{N}(0,1)$, and let $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)^{T}$
2. Return $\mathbf{X}=\mu+\mathbf{C Z}$

Note that the final step is just higher-dimensional version of the familiar transformation $X=\mu+\sigma Z$ to get $X \sim \mathrm{~N}(\mu, \sigma)$ from $Z \sim \mathrm{~N}(0,1)$

Can be modified to generate a multivariate lognormal random vector

8.5.3 Correlated Gamma Random Variates

Want to generate $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ where
$X_{i} \sim \operatorname{gamma}\left(\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}\right), \alpha_{\mathrm{i}}$'s, β_{i} 's specified
$\operatorname{Cor}\left(X_{i}, X_{j}\right)=\rho_{i j}($ specified $)$
Useful ability, since gamma distribution is flexible (many different shapes)

Note that we are not specifying the whole joint distribution, so there may be different X's that will satisfy the above but have different joint distributions

Difficulties:

The α_{i} 's place limitations on what $\rho_{i j}$'s are theoretically possible - that is, there may not even be such a distribution and associated random vector
Even if the desired \mathbf{X} is theoretically possible, there may not be an algorithm known that will work
Even the known algorithms do not have control over the joint distribution
One known case:
Bivariate ($n=2$); let $\rho=\rho_{12}$
$0 \leq \rho \leq \min \left\{\alpha_{1}, \alpha_{1}\right\} / \sqrt{\alpha_{1} \alpha_{1}}$
Positive correlation, bounded above
If $\alpha_{1}=\alpha_{2}$ the upper bound is 1 , i.e., is removed
If $\alpha_{1}=\alpha_{2}=1$, have any two positively correlated exponentials Algorithm (trivariate reduction):

1. Generate $Y_{1} \sim \operatorname{gamma}\left(\alpha_{1}-\rho \sqrt{\alpha_{1} \alpha_{2}}, 1\right)$
2. Generate $Y_{2} \sim \operatorname{gamma}\left(\alpha_{2}-\rho \sqrt{\alpha_{1} \alpha_{2}}, 1\right)$
3. Generate $Y_{3} \sim \operatorname{gamma}\left(\rho \sqrt{\alpha_{1} \alpha_{2}}, 1\right)$
4. Return $\mathbf{X}=\left(X_{1}, X_{2}\right)^{T}=\left(\beta_{1}\left(Y_{1}+Y_{3}\right), \beta_{2}\left(Y_{2}+Y_{3}\right)\right)^{T}$

Correlation is carried by Y_{3}, common to both X_{1} and X_{2}

Other solved problems:
Bivariate gamma with any theoretically possible correlation (+ or -)

General n-dimensional gamma, but with restrictions on the correlations that are more severe than those imposed by existence

Negatively correlated gammas with common α_{i} 's and β_{i} 's

Any theoretically possible set of marginal gamma distributions and correlation structure (see Sec. 8.5.5 below)

8.5.4 Generating from Multivariate Families

Methods exist for generating from:

Multivariate Johnson-translation families - generated vectors match empirical marginal moments, and have cross-correlations close to sample correlations

Bivariate Bézier - limited extension to higher dimensions

8.5.5 Generating Random Vectors with Arbitrarily Specified Marginal Distributions and Correlations

Very general structure
Arbitrary marginal distributions - need not be from same family; can even have some continuous and some discrete
Arbitrary cross-correlation matrix - there are, however, constraints imposed by the set of marginal distributions on what cross correlations are theoretically feasible

Variate-generation method - normal-to-anything (NORTA)
Transform a generated multivariate normal random vector (which is easy to generate) to get the desired marginals and cross-correlation matrix
$F_{1}, F_{2}, \ldots, F_{d}$ are the desired marginal cumulative distribution functions (d dimensions)
$\rho_{i j}(\mathbf{X})=$ desired correlation between the generated X_{i} and $X_{j}(i$ and j are the coordinates of the generated d-dimensional random vector \mathbf{X})
Generate multivariate normal vector $\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)^{T}$ with $Z_{i} \sim \mathrm{~N}(0,1)$ and correlations $\rho_{i j}(\mathbf{Z})=\operatorname{Cor}\left(Z_{i}, Z_{j}\right)$ specified as discussed below
For $i=1,2, \ldots, d$, set $X_{i}=F_{i}^{-1}\left(\Phi\left(Z_{i}\right)\right)$, where Φ is the standard normal cumulative distribution function (CDF)
Since Z_{i} has $\operatorname{CDF} \Phi, \Phi\left(Z_{i}\right) \sim \mathrm{U}(0,1)$, so $X_{i}=F_{i}^{-1}\left(\Phi\left(Z_{i}\right)\right)$ is the inversetransform method of generation from F_{i}, but with a roundabout way of getting the $\mathrm{U}(0,1)$ variate
Evaluation of Φ and possibly F_{i}^{-1} would have to be numerical
Main task is to pre-compute the normal correlations $\rho_{i j}(\mathbf{Z})$, based on the desired output correlations $\rho_{i j}(\mathbf{X})$, so that after the Z_{i}^{\prime} 's are transformed via Φ and then F_{i}^{-1}, the resultant X_{i}^{\prime} s will have the desired correlation structure
This computation is done numerically via algorithms in the original Cario/Nelson paper

Despite the numerical work, NORTA is very attractive due to its complete generality

8.5.6 Generating Stochastic Processes

Need for auto-correlated input processes was demonstrated in examples in Chap. 6

AR, ARMA, ARIMA models can be generated directly from their definitions, which are constructive

Gamma processes - gamma-distributed marginal variates with an autocorrelation structure
Includes exponential autoregressive (EAR) processes as a special case

TES (Transform-Expand-Sample) processes
Flexible marginal distribution, approximate matching of autocorrelation structure empirical observation
Generate sequence of $\mathrm{U}(0,1)$'s that are autocorrelated
Transform via inverse transform to desired marginal distribution
Correlation-structure matching proceeds via interactive software Has been applied to telecommunications models

ARTA (Autoregressive To Anything)

Similar to NORTA (finite-dimensional) random-vector generation
Want generated X_{i} to have (marginal) distribution F_{i}, specified autocorrelation structure
Generate $\operatorname{AR}(p)$ base process with $\mathrm{N}(0,1)$ marginals and autocorrelation specified so that $X_{i}=F_{i}^{-1}\left(\Phi\left(Z_{i}\right)\right)$ will have the desired final autocorrelation structure
Numerical method to find appropriate correlation structure of the base process

8.6 Generating Arrival Processes

Want to simulate a sequence of events occurring over time (e.g., arrivals of customers or jobs)

Event times: $t_{1}, t_{2}, t_{3}, \ldots$ governed by a specified stochastic process

For convenience in dynamic simulations, want recursive algorithms that generate t_{i} from t_{i-1}

8.6.1 Poisson Process

Rate $=\lambda>0$

Inter-event times: $A_{i}=t_{i}-t_{i-1} \sim$ exponential with mean $1 / \lambda$

Algorithm (recursive, get t_{i} from t_{i-1}):

1. Generate $U \sim \mathrm{U}(0,1)$ independently
2. Return $t_{i}=t_{i-1}-(\ln U) / \lambda$

Note that $-(\ln U) / \lambda$ is the desired exponential variate with mean $1 / \lambda$

Obviously generalized to any renewal process where the A_{i} 's are arbitrary positive RVs

8.6.2 Nonstationary Poisson Process

When events (arrivals, accidents, etc.) occur at a varying rate over time Noon rush, freeways, etc.
Ignoring nonstationarity can lead to serious modeling/design/analysis errors
$\lambda(t)=$ mean rate of process (e.g., arrivals) at time t

Definition of process:
Let $N(a, b)$ be the number of events in the time interval $[a, b](a<b)$
Then $N(a, b) \sim$ Poisson with mean $\int_{a}^{b} \lambda(t) d t$

Reasonable (but wrong) idea to generate:
Recursively, have an arrival at time t
Time of next arrival is $t+\operatorname{expo}($ mean $=1 / \lambda(t))$

Why this is wrong:
In above figure, suppose an arrival occurs at time 5 , when $\lambda(t)$ is low Then $1 / \lambda(t)$ is large, making the exponential mean large (probably) Likely to miss the first "rush hour"

A Correct Idea: Thinning
Let $\lambda^{*}=\max _{t} \lambda(t)$, the "peak" arrival rate; "thin" out arrivals at this rate
Generate "trial" arrivals at the (too-rapid) rate λ *
For a "trial" arrival at time t, accept it as a "real" arrival with prob. $\lambda(t) / \lambda *$

Algorithm (recursive-have a "real" arrival at time t_{i-1}, want to generate time t_{i} of the next "real" arrival):

1. Set $t=t_{i-1}$
2. Generate $U_{1}, U_{2} \sim \mathrm{U}(0,1)$ independently
3. Replace t by $t-\left(1 / \lambda^{*}\right) \ln U_{1}$
4. If $U_{2} \leq \lambda(t) / \lambda^{*}$, set $t_{i}=t$ and stop; else go back to step 2 and go on

Proof that Thinning Correctly Generates a Nonstationary Poisson Process:

Verify directly that the number of retained events in any time interval $[a, b]$ is a Poisson RV with mean $\int_{a}^{b} \lambda(t) d t$
Condition on the number of rate $\lambda *$ trial events in $[a, b]$
Given this number, the trial events are $\mathrm{U}(a, b)$
$P($ retain a trial point in $[a, b])$

$$
\begin{aligned}
& =\int_{a}^{b} P(\text { retain a trial point in }[a, b] \mid \text { trial point is at time } t) \underbrace{\frac{1}{b-a}}_{\substack{\text { Densityof } \\
\text { trial-point } \\
\text { location }}} d t \\
& =\int_{a}^{b} \frac{\lambda(t)}{\lambda *} \frac{1}{b-a} d t \\
& =\frac{\int_{a}^{b} \lambda(t) d t}{\lambda *(b-a)} \quad(\text { call this } p(a, b))
\end{aligned}
$$

Let $N^{*}(a, b)=$ number of trial events in $[a, b]$
Thus, $N^{*}(a, b) \sim$ Poisson with mean $\lambda^{*}(b-a)$
Also, $N(a, b) \leq N^{*}(a, b)$, clearly

Then

being the (binomial) probability of accepting n of the k trial points, each of which has probability $p(a, b)$ of being "accepted"

Thus, for $n>1$ (must treat $n=0$ case separately),

$$
\begin{aligned}
P(N(a, b)=n) & =\sum_{k=n}^{\infty} P\left(N(a, b)=n \mid N^{*}(a, b)=k\right) P(N *(a, b)=k) \\
& =\sum_{k=n}^{\infty}\left({ }_{n}^{k}\right)[p(a, b)]^{n}[1-p(a, b)]^{k-n} \exp [-\lambda *(b-a)] \frac{[\lambda *(b-a)]^{k}}{k!} \\
& \vdots \quad(\text { several days of algebra }) \\
& =\exp \left[-\int_{a}^{b} \lambda(t) d t\right] \frac{\left[\int_{a}^{b} \lambda(t) d t\right]^{n}}{n!} \quad \text { as desired. }
\end{aligned}
$$

Intuition: piecewise-constant $\lambda(t)$, time from 11:00 a.m. to 1:00 p.m.

Another Algorithm to Generate NSPP:

Plot cumulative rate function $\Lambda(t)=\int_{0}^{t} \lambda(y) d y$
Invert a rate-one stationary Poisson process (event times t_{i}^{\prime}) with respect to it

Algorithm (recursive):

1. Generate $U \sim \mathrm{U}(0,1)$
2. Set $t_{i}^{\prime}=t_{i-1}^{\prime}-\ln U$
3. Return $t_{i}=\Lambda^{-1}\left(t_{i}^{\prime}\right)$

Compared to thinning:
Have to compute and invert $\Lambda(t)$
Don't "waste" any trial arrivals
Faster if $\lambda(t)$ has a few high spikes and is low elsewhere, and $\Lambda(t)$ is easy to invert
Corresponds to inverse-transform, good for variance reduction

Previous example: $\lambda(t)$ piecewise constant, so $\Lambda(t)$ piecewise linear-easy to invert

Generating NSPP with piecewise-constant $\lambda(t)$ in SIMAN (similar for other processinteraction languages)

Initialize global variables: $\quad \mathbf{X}(1)=$ level of $\lambda(t)$ on first piece $\mathbf{X}(2)=$ level of $\lambda(t)$ on second piece etc.

Create a new "rate-changer" entity at the times when $\lambda(t)$ jumps to a new rate (Or, create a single such entity that cycles back when $\lambda(t)$ jumps)

When the next rate changer arrives (or the single rate changer cycles back), increase global variable \boldsymbol{J} by 1

Generate potential "customer arrivals" with interarrivals \sim exponential with mean $1 / \lambda^{*}$, and for each of these "trial" arrivals:

Generate $U \sim \mathrm{U}(0,1)$
If $U \leq \mathbf{x}(J) / \lambda^{*}$, "accept" this as a "real" arrival and release entity into the model
Else dispose of this entity and wait for the next one

8.6.3 Batch Arrivals

At time t_{i}, have B_{i} events rather than $1 ; B_{i}$ a discrete RV on $\{1,2, \ldots\}$

Assume B_{i} 's are IID and independent of t_{i} 's

Algorithm (get t_{i} and B_{i} from t_{i-1}):

1. Generate the next arrival time t_{i} from the Poisson process
2. Generate B_{i} independently
3. Return with the information that there are B_{i} events at time t_{i}

Could generalize:

Event times from some other process (renewal, nonstationary Poisson)
B_{i} 's and t_{i} 's correlated somehow

